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Abstract 

In the present analysis, we investigated the peristaltic 

transport of a hyperbolic tangent fluid through a porous 

medium in a two-dimensional symmetric inclined channel 

under the assumptions of low Reynolds number and long 

wavelength. The expression for the velocity and axial 

pressure gradient are obtained by employing regular 

perturbation technique. It is observed that the pumping is less 

for hyperbolic tangent fluid than that of Newtonian fluid.  

The effects of various pertinent parameters on the time-

averaged flow rate are discussed with the help of graphs. 

 

Keywords:  Hyperbolic tangent fluid, Symmetric inclined 

channel, Porous medium 

1. Introduction 

Peristaltic transport is a form of fluid transport 

generated by a progressive wave of area contraction or 

expansion along a length of a distensible tube 

containing fluid. Peristaltic transport widely occurs in 

many biological systems for example, food swallowing 

through the esophagus, intra-urine fluid motion, 

circulation of blood in small blood vessels and the 

flows of many other glandular ducts. Several 

theoretical and experimental studies have been 

undertaken to understand peristalsis through abrupt 

changes in geometry and realistic assumptions. 

Peristaltic transport of Newtonian fluids has been 

studied by Fung and Yih (1968), Shapiro et al. (1969) 

and Subba Reddy et al. (2005) under different 

conditions. Moreover, it is well known that most 

physiological fluids including blood behave as non-

Newtonian fluids. So, the study of peristaltic transport 

of non-Newtonian fluids may help to get better 

understanding of the working biological systems. 

Fluids in which viscosity depends on the shear stress or 

on the flow rate are of considerable practical 

importance and is considered as special class of fluids. 

For most of the non-Newtonian fluids, viscosity is 

usually a nonlinear decreasing function of the 

generalized shear rate. This is known as shear-thinning 

behavior. Such fluid is a hyperbolic tangent fluid ( Ai 

and Vafai (2005)). The peristaltic flow of a 

hyperbolic tangent fluid in an asymmetric channel was 

discussed by Nadeem and Akram (2009). Nadeem and 

Akram (2011) have analyzed the effect of magnetic 

field on the peristaltic motion of a hyperbolic tangent 

fluid in a vertical asymmetric channel with heat 

transfer. The peristaltic transport of a Tangent 

hyperbolic fluid in an endoscope numerically was 

investigated by Nadeem and Akbar (2011). Akbar et al. 

(2012) have studied the effects of slip and heat transfer 

on the peristaltic transport of a hyperbolic tangent fluid 

in an inclined asymmetric channel.    

http://www.ijasrm.com/


 

International Journal of Advanced Scientific Research and Management, Vol. 1 Issue 4, April 2016. 

www.ijasrm.com 

ISSN 2455-6378 

114 

 

 

A porous medium is the matter which contains a 

number of small holes distributed throughout the 

matter. Flows through a porous medium occur in 

filtration of fluids. Hall effects on peristaltic flow of a 

Maxwell fluid in a porous medium were investigated 

by Hayat et al. (2007). El-Dabe et al. (2010) have 

discussed the effect of magnetic field on the peristaltic 

motion of a Carreau fluid through a porous medium 

with heat transfer. Navaneeswar Reddy et al. (2012) 

have analyzed the peristaltic flow of a Prandtl fluid 

through a porous medium in a channel. Peristaltic 

pumping of a fourth grade fluid through a porous 

medium in an asymmetric channel was investigated by 

Jyothi et al. (2012). Subba Reddy and Nadhamuni 

Reddy (2014) have studied the peristaltic flow of a 

non-Newtonian fluid through a porous medium in a 

tube with variable viscosity using Adomian 

decomposition method.  

 In view of these, we investigated the 

peristaltic transport of a hyperbolic tangent fluid 

through a porous medium in an inclined channel under 

the assumptions of low Reynolds number and long 

wavelength. The expression for the velocity and axial 

pressure gradient are obtained by employing 

perturbation technique. The effects of various pertinent 

parameters on the time-averaged flow rate are 

discussed with the help of graphs. 

2. MATHEMATICAL FORMULATION 

We consider the peristaltic motion of a hyperbolic 

tangent fluid through a porous medium in a two-

dimensional symmetric channel of width  . The flow is 

generated by sinusoidal wave trains propagating with 

constant speed   along the channel walls. The channel 

walls are inclined at an angle   to the horizontal. Fig. 1 

shows the schematic diagram of the channel. The wall 

deformation is given by 

 

2
( , ) s in ( )Y H X t a b X c t




       (1) 

where b is the amplitude of the wave,    - the wave 

length and X  and Y  - the rectangular co-ordinates 

with X  measured along the axis of the channel and 

Y  perpendicular to X  . Let ( , )U V  be the velocity 

components in fixed frame of reference ( , )X Y . 

 

Fig. 1 The physical model 

The flow is unsteady in the laboratory frame . However, 

in a co-ordinate system moving with the propagation 

velocity c (wave frame (x, y)), the boundary shape is 

stationary. The transformation from fixed frame to 

wave frame is given by 

, , ,x X ct y Y u U c v V                 (2) 

where 
( , )u v

 and 
( , )U V

 are velocity components in 

the wave and laboratory frames respectively. The 

constitutive equation for a Hyperbolic Tangent fluid is 

 

   0
tan h

n

     
 

     
 

        (3) 

where   is the extra stress tensor, 


 is the infinite 

shear rate viscosity, 
o

  is the zero shear rate viscosity, 

  is the time constant, n  is the power-law index and 

  is defined as   

 

1 1

2 2
i j j i

i j

                            (4) 

 

where   is the second invariant stress tensor. We 

consider in the constitutive equation (3) the case for 

which 0

  and 1  , so the Eq. (3) can be 

written as 

http://www.ijasrm.com/


 

International Journal of Advanced Scientific Research and Management, Vol. 1 Issue 4, April 2016. 

www.ijasrm.com 

ISSN 2455-6378 

115 

 

 

      0 0 0
1 1 1 1

n n

n                     

                                 (5) 

The above model reduces to Newtonian for 0   and 

0n  .    

The equations governing the flow in the wave frame of 

reference are  
 

0
u v

x y

 
 

 
              (6) 

 0
s in

yxxx
u u p

u v u c g
x y x x y k

 
  

      
          

       

      (7) 

0
c o s

xy yyv u p
u v v g

x y y x y k

  
  

    
       

     

             (8) 

where 


is the density   is the electrical 

conductivity, 0
B

 is constant transverse magnetic field 

and  k  is the permeability of the porous medium. The 

corresponding dimensional boundary conditions are 

u c   at y H               (9) 

0
u

y





 at 0y     (10) 

Introducing the non-dimensional variables defined by  

2

0

,  , ,  ,  ,  ,
x y u v a p a b

x y u v p
a c c c a

 
    

      
 

0 0 0

,  ,  ,  ,  ,xx yy
xx xy xy yy

H ct a
h t

a c c c

 
     

   
    

 

0

R e ,  ,  ,
a c c a q

W e q
a c a c

 





   

  (11) 

into the Equations (6) - (8), reduce to (after dropping 

the bars) 

0
u v

x y

 
 

 

    (12) 

 
2 1 R e

R e 1 s in
xyxx

u u p
u v u

x y x x y D a F r


  

    
        

     

(13) 

2

3 2 R e
R e co s

xy yyv v p
u v v

x y y y y D a F r

  
    

    
       

     

 (14) 

where
 2 1 1

x x

u
n W e

x
 


     

 


 , 

 
2

1 1
x y

u v
n W e

y x
  

  
        

  

 

 2 1 1
yy

v
n W e

y
  


     

 


 

1

2 22 2

2 2 2
2 2

u u v v

x y x y
   

        
         

         

2
c

F r
a g

 is the Froude number, and 
2

k
D a

a
  is 

the Darcy number.  

Under lubrication approach, neglecting the 

terms of order   and Re, the Equations (13) and (14) 

become 

 
1 R e

1 1 1 s in
p u u

n W e u
x y y y D a F r


       

        
       

        (15) 

0
p

y





           (16) 

From Eq. (15) and (16), we get  

   

2
2

2

1 R e
1 1 s in

d p u u
n n W e u

d x y y y D a F r


    
       

     

     (17) 

The corresponding non-dimensional slip 

boundary conditions in the wave frame are given by  
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1u    at  1 s in 2y h x          (18) 

0
u

y





 at 0y                      (19) 

The volume flow rate q  in a wave frame of 

reference is given by 

0

h

q u d y  .    (20) 

The instantaneous flow ( , )Q X t  in the laboratory 

frame is 

0 0

( , ) ( 1)

h h

Q X t U d Y u d y q h     
 (21) 

The time averaged volume flow rate Q  over one 

period T
c

 
 

 

 of the peristaltic wave is given by 

0

1
1

T

Q Q d t q
T

      (22) 

3. SOLUTION 

 Since Eq. (17) is a non-linear differential 

equation, it is not possible to obtain closed form 

solution. Therefore we employ regular perturbation to 

find the solution. 

For perturbation solution, we expand ,
d p

u
d x

 and q as 

follows 

 
2

0 1
u u W e u O W e          (23) 

 
20 1

d pd p d p
W e O W e

d x d x d x
         (24) 

 
2

0 1
q q W e q O W e          (25) 

Substituting these equations into the Eqs. (17) 

- (19), we obtain 

3.1. System of order 
0

W e  

 

2

0 0

02

1 R e 1
1 s in

u d p
n u

y D a d x F r D a



    



       (26)  

and the respective boundary conditions are 

0
1u     at  y h   (27) 

0
0

u

y





 at 0y    (28) 

3.2. System of order 
1

W e
 

 

2
2

1 1

12

1
1

o
uu d p

n u
y D a d x y y

   
      

     

 (29) 

and the respective boundary conditions are 

1
0u    at y h    (30) 

1
0

u

y





at 0y     (31) 

3.3 Solution for system of order 
0

W e  

Solving Eq. (26) using the boundary conditions (27) 

and (28), we obtain 

 

0

0 2

1 R e c o sh
s in 1 1

1 c o sh

d p y
u

n d x F r h


   
      

    

      (32) 

where  1 / 1D a n    

The volume flow rate 
0

q  is given by 

 

0

0 3

1 R e s in h c o sh
s in

1 c o sh

d p h h h
q h

n d x F r h


      
     

    

     (33) 

From Eq. (33), we have 
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   

 

2

0 10
1 c o sh R e

s in
s in h c o sh

q h n hd p

d x h h h F r




  
 

   

      (34) 

3.4 Solution for system of order 
1

W e  

Substituting Eq. (32) in the Eq. (29) and 

solving the Eq. (29), using the boundary conditions 

(30) and (31), we obtain 

 

 

 

 

1

1 2

2

0

3

1 c o s h
1

1 c o s h

R e
s in

s in h 2 2 s in h c o s h
       

3 2 s in h s in h 2 c o s h1 c o s h

d p y
u

n d x h

d p

h h yn d x F r

y y hn h



 
 

 
   

 
      

 
  

           

     (35) 

The volume flow rate 
1

q  is given by 

   

2

0

1

1 33 2 3

R e
s in

1 s in h c o sh

1 c o sh 6 1 c o sh

d p
n

d p h h h d x F r
q

n d x h n h


 

  
      

 
 

      

         (36) 

where 4 cosh 2 sinh 2 sinh cosh co sh 2h h h h h          . 

From Eq. (36) and (34), we have 

 

     

2

0

3

11

2 2

R e
s in

1 c o sh

s in h c o sh c o sh s in h c o sh6 1

d p

q n hd p n d x F r

d x h h h h h h hn


 

 
     

 
         

(37) 

Substituting Equations (34) and (37) into the Eq. (24) 

and using the relation 

0 1
d p d pd p

W e
d x d x d x

   and neglecting terms 

greater than  O W e , we get 

   

 

 

 

23 5

3

1 co sh R e
s in

s in h co sh 6 s in h co sh

q h n h q hd p W e n

d x h h h F rh h h


     

  
       

(38) 

The dimensionless pressure rise per one 

wavelength in the wave frame is defined as 

1

0

d p
p d x

d x
       (39) 

Note that, as 0  , D a   , 0W e   and 

0n   our results coincide with the results of 

Shapiro et al. (1969). 

4. RESULTS AND DISCUSSIONS 

The variation of pressure rise p  with 

time-averaged volume flow rate Q  for 

different values of W e  with 0 .5  , 0 .5n 

, 0 .2F r  , R e 1 , 
4


   and 0 .1D a   is 

illustrated in   Fig. 2.  It is noted that, the time-

averaged volume flow rate Q  increases with 

increasing W e  in pumping  0p  , free-pumping 

 0p   and co-pumping  0p   regions.      

 
Fig. 3 shows the variation of pressure rise 

p  with time-averaged volume flow rate Q  for 

different values of n  with 0 .5  , 0 .2F r  , 

R e 1 , 
4


  , 0 .01W e   and 0 .1D a  . It 

is observed that, the time-averaged volume flow rate 

Q  decreases with an increase in n  in both the 

pumping and free pumping regions, while it increases 

with increasing n  in co-pumping region for chosen 

 0p  .   

The variation of pressure rise p  with time-

averaged volume flow rate Q  for different values of 
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D a  with 0 .5  , 0 .2F r  , R e 1 , 
4


  , 

0 .5n   and 0 .01W e   is shown in Fig. 4. It is 

noted that, the time-averaged volume flow rate Q  

decreases with increasing D a  in the pumping region, 

while it increases with increasing D a  in both the free-

pumping and co-pumping regions.  

Fig. 5 shows the variation of pressure rise 

p  with time-averaged volume flow rate Q  for 

different values of R e  with  0 .5 ,  0 .1D a  , 

0 .5n  , 0 .2F r  ,  
4


     and 0 .01W e  . 

It is found that, the time-averaged volume flow rate Q  

increases with increasing R e  in all the three regions.  

The variation of pressure rise p  with time-

averaged volume flow rate Q  for different values of 

F r  with  0 .5 ,  0 .1D a  , 0 .5n  , R e 1

,  
4


     and 0 .02W e   is shown in Fig. 6. It is 

observed that, the time-averaged volume flow rate Q  

decreases with increasing F r  in all the three regions. 

 

Fig. 7 depicts the variation of pressure rise 

p  with time-averaged volume flow rate Q  for 

different values of   with  0 .5 ,  0 .1D a  , 

0 .5n   , 0 .2F r  ,  
4


     and 0 .02W e  .  

It is noted that, the time-averaged volume flow rate Q  

increases with increasing   in all the three regions.    

 

The variation of pressure rise p  with time-

averaged volume flow rate Q  for           different 

values of   with R e 1, 0 .1D a  , 0 .5n   , 

0 .2F r  ,  
4


     and 0 .02W e     is depicted 

in    Fig. 8. It is found that, the time-averaged volume 

flow rate Q   increases with an increase in   in both 

the pumping and free-pumping regions, while it 

decreases with increasing   in the co-pumping region 

for chosen  0p  . 

 

5. CONCLUSIONS 

In this paper, we studied the peristaltic flow of a 

hyperbolic tangent fluid through a porous medium in a 

planar channel under the assumptions of low Reynolds 

number and long wavelength. The expression for the 

velocity and axial pressure gradient are obtained by 

employing perturbation technique. It is observed that, in 

the pumping region the time-averaged flow rate Q  

increases with increasing , R e ,W e   and  , while it 

decreases with increasing ,n D a  and F r .  Moreover, 

it is observed that the pumping is less for hyperbolic 

tangent fluid than that of Newtonian fluid.  
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Fig. 2  The variation of pressure rise p  with time-

averaged volume flow rate Q  for different values of 

W e  with 0 .5  , 0 .5 ,n  0 .2F r  , R e 1 , 

4


    and 0 .1D a  .    

 

Fig. 3    The variation of pressure rise p  with time-

averaged volume flow rate Q  for different values of n  

with 0 .5  , 0 .2F r  , R e 1 , 
4


   , 

0 .02W e   and 0 .1D a  .    

 

 

Fig. 4     The variation of pressure rise p  with time-

averaged volume flow rate Q  for different values of 

D a  with  0 .5  , 0 .5n  , 0 .2F r  , R e 1 , 

4


    and 0 .02W e  .     

 

Fig. 5 The variation of pressure rise p  with time-

averaged volume flow rate Q  for different values of 

R e  with  0 .6 , 0 .1D a   , 0 .5n  , 0 .2F r  ,  

4


     and 0 .01W e  .    
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Fig. 6 The variation of pressure rise p  with time-

averaged volume flow  rate Q  for different values of 

F r  with  0 .6 , 0 .1D a   , 0 .5n  , R e 1 ,  

4


     and 0 .02W e  .     

 

Fig. 7  The variation of pressure rise p  with time-

averaged volume flow rate Q  for different values of   

with  0 .6 , 0 .1D a   , 0 .5n  , 0 .2F r  ,  

4


     and 0 .02W e  .     

 

Fig. 8   The variation of pressure rise p  with time-

averaged volume flow  rate Q  for different values of   

with 0 .02W e  , 0 .5n   , 0 .2F r  , R e 1 , 

4


     and 0 .1D a  .    
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