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Abstract 

Oxidative stress due to increased generation of 

reactive oxygen species (ROS) leads to above than 

genomic instability and damages proteins, lipids 

and DNA, leading to development of pathological 

conditions such as inflammation, cardiovascular 

diseases and cancer. In the present study, we 

investigated the total antioxidant status and levels 

of  reduced glutathione, catalase and lipid 

peroxidation in leukemia  patients.  The patients 

were divided into two groups one with normal 

karyotype and another group of patients with 

abnormal karyotype. The study included 35 

untreated leukemia patients and 23 age and sex 

matched healthy controls. We report elevated 

plasma lipid peroxidation (MDA levels), catalase, 

and GSH  levels,  and reduced FRAP activity in 

patients as compared to control subjects. Increased 

activity of antioxidative enzymes in leukemia 

patients indicates the generation of free radicals 

causing the undesired pathological changes in 

leukemia patients. In summary, levels of specific 

antioxidant enymes may serve as surrogate markers 

of genomic instability in leukemia patients.  
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1. Introduction 

Reactive oxygen species (ROS) has been 

established in the etiology and development of 

leukemia and have been implicated in the 

development of leukemogenesis
[1]

. The  ROS/ free 

radicals  are  metabolites produced during 

abnormal cellular process. The excessive 

production of ROS with abnormal response of 

antioxidant system disturbs the homeostasis 

eventually leading to oxidative stress. ROS plays a 

dual role in tumorigenicity, particularly during 

generation of neoplasms, induces cell death, 

including apoptosis, and protects the cells from 

apoptosis thereby promoting cell survival, leading 

to proliferation, migration, metastasis  and drug-

resistance
[1-6]

. ROS are involved in the 

pathogenesis of malignancies incluidng major types 

of leukemia e.g., acute myeloid leukaemia, chronic 

lymphocytic leukemia, chronic myeloid leukaemia, 

and acute lymphoblastic leukaemia
[7-11]

. 

The oxidative stress markers have been 

implicated in the progression and pathogenesis of 

leukaemia by several mechanisms. The products of 

lipid peroxidation  and ROS leads to genomic 

instability and aberrant DNA by producing 7,8 

dihydro-8-oxo-2
/
deoxyguanosine (8-oxoG) and 

other oxo-base derivatives, which may lead to point 

mutations subsequently leading to tumorigenesis. 

Studies have  reported that 8-OHG and its 

nucleoside form 8-OHdG are the indicators of 

oxidative DNA damage in vivo and in vitro
[11, 12]

. 

The 8-OHG in the DNA causes a G-T and a C-A 

transversion, as 8-OHG allows the incorporation of 

cytosine and adenine nucleotides opposite the 

lesion during DNA replication and has been 

reported to be involved in carcinogenesis and 

pathogenesis of aging associated disease and 

cancer
[13-18]

. 

The BCR-ABL, induced ROS production 

results in malignant transformation, resistance to 

apoptosis,  and increased DNA damage
[19-21]

. The 
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FLT3-ITD mutation induces increased production 

of free radicals leading to DNA double strands 

breaks and repair errors
[1,

 
22]

. Also the mutant 

NRAS and HRAS induces the production of  

superoxide and peroxide ions leading to accelerated 

cell differentiation
[23]

.  

ROS participate in several cell growth 

pathways by interfering with the regulation of 

certain genes and signal transduction pathways, 

including tumor protein p53 mutation, activator 

protein-1 (AP-1) activation, vascular endothelial 

growth factor (VEGF) leading to  several 

haematological malignancies including leukemia
[1, 

24-26]
. 

Additionally, it has been observed that high-

dose chemotherapy, used as mainstay in leukemia 

treatment, is often accompanied with generation of 

reactive oxygen species resulting in cytotoxicity
[1]

. 

Thus, the utilization of chemotherapy in 

combination with antioxidants may attenuate 

leukemia progression, particularly for cases of 

refractory or relapsed neoplasms.  

 Understanding the mechanisms of ROS 

generation in leukaemia patients may be helpful in 

disease susceptibility and designing better 

therapeutic strategies with less toxicity. Therefore, 

the present study focuses on the roles of OS in 

leukaemia patients characterizing the associations 

between ROS and disease pathology. 

2. Materials and methods 

The mean age was 35 years. Informed consent was 

taken from all the subjects.  Peripheral blood 

samples were taken from leukemia patients (n=35) 

along with age and sex matched healthy control 

(n=23).  Conventional cytogenetic using bone 

marrow karyotyping was used and the patients 

were divided into subgroups: a) Leukemia Patients 

with normal karyotype (n=17), and b) Leukemia 

patients with abnormal karyotype (n=18). The 

blood sample was separated by centrifugation at 

3000 rpm per 15 minutes and plasma was separated 

for further biochemical estimation of total 

antioxidant status, reduced glutathione (GSH) 

levels, catalase enzyme activity and lipid 

peroxidation levels. Protein estimation was done by 

Lowry’s method using bovine serum albumin 

(BSA) as standard
[27]

. 

Cytogenetic studies: Karyotyping 

Chromosome analysis was performed for 

karyotyping, routine cytogenetic procedures were 

followed
[28]

 (as described in Rooney and 

Czepulkowski). Heparinised bone marrow samples 

obtained at the time of diagnosis, were processed 

and cultured for 24 h/48 h in RPMI 1640 medium 

(Caission labs,  Cat. no RPMI-012P) + 20% fetal 

bovine serum (GIBCO Cat. no. 10270), 

COLCEMID (0.05µg/ml) (Biological Industries 

10μg/ml Cat. no 12004-1D) was added for the last 

60 min of culture, followed by hypotonic treatment 

with a 0.075-KCl solution and a final fixation in 

methanol/acetic acid (3:1). Chromosomes were G-

banded for identification. Whenever possible, at 

least, 20 metaphase were analysed according to the 

International System for Cytogenetic Human 

Nomenclature,  2009).  

FRAP assay- to measue total antioxidant power 

The reduction of ferric tripyridyl triazine (Fe III 

TPTZ) complex to ferrous fromcan be measured by 

this method of Iris et al., 1996 taking absorbance at 

593nm
[29]

.This non-specific reaction drive the ferric 

ions to ferrous ions. The absorbance level is 

directly related to the combined or total reducing 

power of the electrondonating antioxidants present 

in the reaction mixture. Ferrous sulphate (1mM) 

was used as standard. 

Glutathione Reductase (GSH) 

Glutathione involves oxidation of GSH by 

sulfahydryl reagent 5’-dithio-bis (2 –nitrobenzoic 

acid) DTNB to form TNB, which is measured at 
412nm

[30]
. The GSSG formed can be recycled to 

GSH by glutathione reductase in presence of 

NADPH. 

Catalase  

Catalase activity is essentially measured by the 

method of Beers and Sizer, (1952)
[31]

.  Hydrogen 

peroxide (H2O2) was used as the substrate and 

disappearance of peroxide is measured 

spectrophotometrically. The absorbance  at 240nm 

is measured directly to calculate the reaction rate. 

Results were expressed as  H2O2 decomposed per 

minute per mg. 

Lipid Peroxidation 

The Lipid peroxidation involves the reaction of 

chromogenic reagent , N methyl-2-phenyl-indole 

with MDA and 4hydoxyalkenals at 45
0
C

[32]
. The 

TBARS was evaluated by using spectrophotometric 

method based on the reaction between MDA and 

thiobarbitturic Acid (TBA). Absorbance was 

measured at a wavelength 532 nm with molar 

extinction coefficient ε532=1.56×105 M-1cm-1.22 

Plasma level of TBARS were expressed as nmole 

MDA/mL. 

Statistical Analysis 

All biochemical analyses were performed in 

triplicate. The data is represented as Mean ± 

http://www.ijasrm.com/


 

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 9, Sept 2018 

www.ijasrm.com 

ISSN 2455-6378 

 

 

 

18 

standard deviation. The levels between various 

groups and subgroups were compared using 

Student’s t-test using the graphical software SPSS, 

and differences with p<0.01 were considered to be 

significant.  

3. Results 

The leukemia patients were categorized into two 

groups based on karyograms: patients with normal 

karyotype  (n=17), and patients with abnormal 

karyotype (n=18). The total antioxidant level as 

measured by FRAP levels was found to be 

significantly lower in leukemia patients compared 

to healthy controls (Fig. 1A). Total antioxidant 

levels were signicantly lower for both groups of 

leukemia patients compared to control; no 

significant differences for total antioxidant status 

was found within the two groups of leukemia 

patients  the leukemia pateints, i.e., normal.   vs. 

abnormal karyotype (Fig. 1B). 

 The GSH levels were significantly higher in 

leukemia patients compared to the control group 

(Fig. 2A); it was observed to be higher in both 

subgroups of patients as compared to control group. 

Further,  subgroup analysis among the patients 

showed that GSH levels were significantly higher 

in patients with abnormal karyotype  compared to 

those in patients with normal karyotype (Fig. 2B).  

 

 

Figure 1:  Comparison of total antioxidant status measured by FRAP assay between (A) control and leukemia 

patients, and (B) control, leukemia patients with normal karyotype and leukemia patients with abnormal 

karyotype. Values represent Mean ± SD. ** Indicates statistical difference with p < 0.01.  

 

Figure 2:  Comparison of reduced glutathione (GSH) levels between (A) control and leukemia patients, and (B) 

control, leukemia patients with normal karyotype and leukemia patients with abnormal karyotype. Values 

represent Mean ± SD. ** Indicates statistical difference with p < 0.01.  

 

Significant increase in total catalase activity 

levels in leukemia patients compared to the healthy 

control individuals (Fig. 3A). As observed for GSH 

levels, significantly elevated catalase activity was 

also observed in both the subgroups of patients as 

compared to control group (Fig. 3B). Among 

leukemia patients, catalase activity was 

significantly higher in patients with abnormal 

karyotype  compared to those in patients with 

normal karyotype (Fig. 3B).  

 For lipid peroxidation activity, no 

significant differences were found between controls 

and leukemia patients (Fig. 4A). Intrestingly, the 

lipid peroxidation levels for the leukemia patients 

with abnormal karyotype was significantly higher 

than control healthy individuals (Fig. 4B). Further, 
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leukemia patients with abnormal karyotype also 

had significantly higher lipid peroxidation 

compared to patients with normal karyotype (Fig. 

4B). No significant differences for lipid 

peroxidation levels were observed between controls 

and leukemia patients with normal karyotype.  

 

Figure 3:  Comparison of Catalase activity levels between (A) control and leukemia patients, and (B) control, 

leukemia patients with normal karyotype and leukemia patients with abnormal karyotype. Values represent 

Mean ± SD. ** Indicates statistical difference with p < 0.01.  
 

 

Figure 4:  Comparison of lipid peroxidation status as measured by MDA levels between (A) control and 

leukemia patients, and (B) control, leukemia patients with normal karyotype and leukemia patients with 

abnormal karyotype. Values represent Mean ± SD. ** Indicates statistical difference with p < 0.01.  

 

Discussion  

Oxidative stress is the result of imbalance between 

free radicals and antioxidant defense system and 

serve an important role in pathogenesis of 

leukemia. Conventional cytogenetic analysis using 

Giemsa banding of chromosomes detects the 

numerical and structural abnormalities.  The 

Metaphase cytogenetic analysis of is of gold 

standard  to identify  the translocations and related 

changes common in AML, ALL and CML 

diseases. In the present study, we studied the 

antioxidant enzyme status in two groups of patients 

categorized by using conventional cytogenetics 

method of karyotyping, one group of patients was 

with normal karyotype and another was with 

abnormal karyotype.  

We observed a significant decrease in total 

antioxidant level in FRAP in both the subgroups of 

patients as compared to control group. Our results 

are in agreement with report from Mazor et al.,  

(2008)
[33]

 who reported significantly decreased total 

FRAP activity in pediatric patiients with acute 

lymphocytic leukemia (ALL) and solid tumors. 

In our study, GSH activity was found to be 

elevated significantly in both the subgroups of 

patients as compared to control group Our results 

are in parallel with results reported in previous 

studies
[33, 34]

. Several researchers have reported that 

the elevated leves of GSH are directly proportional 

to disease duration as a consequence of increased 

tripeptide synthesis depending on the increased 

lymphocytes glutathione peroxidase activity further 

leading to increase in GSH activity in CLL
[34]

. 

The antioxidant enzyme catalse catalyzes 

the conversion of hydrogen peroxide to water and 

molecular oxygen.Variations in catalase level has 
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been observed in many disease conditions 

including acute myeloid leukemia
[35]

. A significant 

increase in total catalase levels was found in both 

the subgroups of patients as compared to control 

group [control vs. normal karyotype (p<0.0001) 

and control vs. abnormal karyotype (p<0.04)] 

between both the subgroups of patients (p<0.005). 

Our results are in concordance with previous 

studies 
[34, 36]

. However, a few studies have also 

reported the  low levels of catalse in leukemia 

patients suggesting various mechanisms
[35]

. 

Lipid peroxidation causes damage to cell 

membranes and lipid-containing structures. One of 

the intermediate products of this reaction are 

hydroperoxides and secondary products 

[malondialdehyde (MDA) and 4-

hydroxynonenal/4-hydroxy-2-nonenal (HNE)]  

interacts with the membranes and endanger cells
[37, 

38]
. The products of lipid peroxidation can cause 

irreversible damage to proteins and nucleic acid via 

modifying the amino acid residues to form stable 

adducts or covalent adducts with nucleic acids and 

membrane
[39, 40]

. The MDA levels are an important 

biomarker in leukemia having diagnostic and 

prognostic role and helps in predicting the disease 

progression
[35]

. We observed a significant increase 

in lipid peroxidation levels in two subgroups of 

patients, with normal karyotyotype and with 

abnormal karyotype in comparison with control 

group (p<0.002). However, the increase was 

insignificant when compared between control 

group and normal karyotype leukemia patients 

group. 

 In summary, this pilot study suggests that 

assessment of differences in the specific 

antioxidants such as GSH and catalase may be used 

as surrogate markers of genomic instability in 

leukemia patients, and may be beneficial in 

deciding treatment decisions for better patient 

outcomes. 
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