www.ijasrm.com

ISSN 2455-6378

α regularity and α normality axioms in a space

¹Md. Mamun Ar Rashid

¹Dept. of Mathematics ,Santipur College , P.O. Santipur , Dist. Nadia ,W.B. India.

Abstract

In this paper α regularity and a normality axioms are introduced in a space defined by A. D. Alexandroff and some of their properties are investigated. Also α bi compact and α Housdorff spaces are defined and a few results are expressed.

Key words: a open sets, a bi compact set, a regular space, a normal space.

AMS Subject Classification: 54 A 05.

1 Introduction:

Topological spaces have been generalized in several ways. For example Mashhour et. al. [6] omitted the intersection condition and then Das and Samanta [3] investigated a space without any structural conditions. Perhaps the first to introduce such a generalisation was Alexandroff [1], who weakened the union requirements of a topological space. In this paper α bi compact sets and α regularity axioms are introduced in a space defined by A.D.Alexandroff and some of their properties are investigated.

2. Prelimineries:

Definition 1 [1]. A set X is called a space if in it is chosen a system of subsets F satisfying the following axioms

(i) The intersection of a countable number of sets from F is a set in F.

(ii) The union of a finite number of sets from F is a set in F.

(iii) The void set is a set in F.

(iv) The whole set X is a set in F.

Sets of F are called closed sets. Their complementary sets are called open. It is clear that instead of closed sets in the definition of a space, one may put open sets with subject to the conditions of countable summability, finite intersectability and

the condition that X and the void set should be open. The collection of such open sets will sometimes be denoted by τ and the space by (X, τ) . In general τ is not a topology. By a space we shall always mean an Alexandroff space.

Definition 2[1]. With every $M \subset X$ we associate its closure cl(M), the intersection of all closed sets containing M and scl(M), the intersection of all semi closed sets containing M.

Note that cl(M) and scl(M) is not necessarily closed and semi closed respectively in a space.

Definition 3[7]. Two sets A, B in X are said weakly α separated if there are two α open sets U,V such that $A \subset U, B \subset V$ and $A \cap V = B \cap U = \Phi$. **Definition** 4[7]. A set N, a subset of X is said to be a α neighborhood of a point x of X if and only if there exist a α open set O containing x such that $O \subset N$.

Definition 5[7]. The α interior of a set A in a space X is define as the union of all α open sets contained in A and is denoted by α -int (A).

Definition 6[7]. A subset A of a space (X,τ) is said to be α open if A \subset int(cl(intA)). Complement of α open set is called α closed set.

3. α Regular and α Normal space:

Definition 7. A space (X, α) is said to be α regular space if for any $x \in X$ and any α closed set F such that x does not belongs to F, there exist α open sets U,V such that $x \in U, F \subset V$ and $U \cap V = \Phi$.

Definition 8. A space (X,τ) is said to be α normal space if for any two disjoint α closed sets F and T, there exist α open sets U,V such that $F \subset U,T \subset V$ and $U \cap V = \Phi$.

Definition 9. A space (X,τ) is said to be α R0-space if for each α open set G and $x \in G$ implies α cl{x} $\subset G$.

Definition 10. A space (X,τ) is said to be α R1-space if for $x,y\in X$ such that x does not belong to α

www.ijasrm.com

ISSN 2455-6378

cl {y}, there exist α open sets U,V such that $x \in U$, y ϵ V and U \cap V= Φ .

Definition 11. A space (X,τ) is said to be α Housdorff space if for $x,y\in X$ such that $x \neq y$, there exist α open sets U,V such that $x\in U$, $y\in V$ and $U\cap V=\Phi$.

We know that a topological space (X,τ) is α regular if and only if for any point $x \in X$ and any α open set U containing x there is a α open set V such that $x \in V \subset \alpha$ cl(V) \subset U.

But this is not true in a space.

Example1. Let X=R-Q and $\tau = \{X, G_i\}$ where G_i runs over all countable subsets of R-Q. Then (X, τ) is a space but not a topological space .Clearly in this space for any $x \in X$, $\alpha \ cl\{x\}=\{x\}$. Thus for $x \in X$ and α open set U such that $x \in U$ then $x \in \{x\} \subset \alpha \ cl\{x\} \subset U$. But (X, τ) is not α regular.

Theorem 1. A space X is α regular if and only if for any $x \in X$ and any α open set U containing x , there is a α open set V and a closed set F such that $x \in V \subset F \subset U$.

The proof is simple and omitted.

The similar characterization of α normal space in a space also does not hold.

Theorem 2. A space X is α normal if and only if for any closed set F and any α open set U containing F, there is α open set V and α closed set F' such that $F \subset V \subset F' \subset U$.

Theorem 3. Every α regular space is α R1. The proofs are straight forward and so omitted.

4. α bi compact and locally α bi compact space:

Definition 10. A space (X,τ) is said to be α bi compact if every α open cover of it has a finite sub cover

Definition 12. A space X is said to be locally α bi compact if for every point $x \in X$ there is α open neighborhood U of x such that α cl(U) is α bi compact.

Theorem 4. If a space (X,τ) is α R1 and α bi compact, then it is both α regular and α normal.

Proof. Let $x \in X$ and F be a α closed set such that x does not belongs to F. Let $y \in F$. Then x does not belong to α cl{y}. Since (X,τ) is α R1, there are α open sets U y, V y such that $x \in Uy$, $y \in Vy$ and $Uy \cap Vy = \Phi$. Now $[Vy : y \in F]$ along with X-F forms an α open cover of X. Since X is α bi compact, there are finite number of points

y1,.....yn in F such that $F \subset U\{V_{yi.}:i=1,2,..n\}$. V=U{V_{yi}:i=1,2,..n}, U= $\cap \{U_{yi}:i=1,2,..n\}$

Then $x \in U$, $F \subset V$ and $U \cap V = \Phi$. So X is α regular. To show that (X,τ) is α normal, let F_1, F_2 are two disjoint α closed sets in X. Let $x \in F_1$, then x does not belongs to F_2 . Since X is α regular there are α open sets U'_x, V'_x such that $x \in U'_x$, $F \subset V'_x$ and U'_x, $\cap V'_x = \Phi$. Then $\{U'_x : x \in F_1\}$ along with X-F₁ forms an α open cover of X. Then proceeding as above we can find α open sets U',V' such that $F_1 \subset U', F_2 \subset V'$ and U' $\cap V' = \Phi$.

Note 1. A α Housdorff α bi compact space is both α regular and α normal.

Definition 13 . A space X is said to be locally α bi compact if for every point $x \in X$, there is a α open neighborhood U of x such that α cl {U} is α bi compact.

Remark 1. It is well known that a α Housdorff locally α bicompact topological space is α regular. But this is not true in a space.

Example 2. Consider the above example, then X is α Housdorff. Since for any for $\alpha \in X$, $\{\alpha\}$ is an α open set that is α open set containing α such that $\{\alpha\} = \alpha$ cl $\{\alpha\}$ is α bi compact, so X is locally α bi compact. But X is not α regular.

Remark 2 .In a α Housdorff topological space α compact subsets are α closed. But this is not true in a space.

Example 3. Consider the above example 1 . (X,τ) is α Housdorff . Let $\alpha \in X$, then $\{\alpha\}$ is α bi compact but not α closed.

Theorem 5. In a α Housdorff space α bi compact sets are α closed if and only if arbitrary union of α open sets whose complement is α bi compact is α open.

Proof. Let (X,τ) is a α Housdorff space in which α bi compact sets are α closed. Let {Gi} be a collection of α open sets and G= U Gi such that X-G is α bi compact. Then X-G is α closed so G is α open.

Conversely let the condition be hold. Let A be a α bicompact set. We shall show that A is semi closed .Let $x \in X$ -A. Then x does not belongs to A .Let $y \in A$. Then $x \neq y$. Since (X, τ) is α Housdorff, there exist α open sets Uy, Vy such that $x \in Uy$, $y \in Vy$ and Uy \cap Vy = Φ .Now {Vy : $y \in A$ } is a α open cover of A . Since A is α bi compact there exist finite number of points y_1, \ldots, y_n in A such that $A \subset U$ { V $_{yi}$:i=1,2,...}=V x(say). Let U x = \cap { U $_{yi}$:i=1,2,...}. Then $x \in Ux$, $A \subset V x$ and $U x \cap V x = \Phi$. Now Ux \subset X-V x \subset X-A. Thus U Ux \subset X-A \subset

www.ijasrm.com

U{{x}: x∈X-A} ⊂ U{Ux: x∈X-A}, which implies that X-A= U{Ux: x∈X-A}. So X-A is the union of *α* open sets whose complement A is *α* bicompact. So X-A is *α* open. So A is *α* closed.

Theorem 6. In a α R₁ topological space (X,τ) , if A is α compact then U{ α -cl({a}):a \in A} is α closed.

Proof.Let (X,τ) be a α R₁ topological space .Let A be α i compact .Let x does not belongs to U{ α -cl $(\{a\}):a\in A\}$. Then x does not belongs to α $cl(\{a\})$, for all $a \in A$. Since (X, τ) is $\alpha = R_1$ there exist α open sets Ua, Va such that x \in Ua, a \in Va and Ua \cap Va= Φ .Now {Va: a \in A} is an α open cover of A. Since A is α compact there exist finite number of points $a_1, \ldots, a_n \in A$ such that $A \subset U\{V_{ai}\}$:i=1,2,..n=V., Let U= $\cap \{ U_{ai} : i= 1,2,..n \}$. Then $x \epsilon U, A \subset V \text{ and } U \cap V = \Phi. \text{Now } a \epsilon A \subset V \subset X \text{-} U ,$ where X-U is α closed .So α -cl({a}) \subset X-U, for all a belongs to A. Hence U{ α -cl({a}):a \in A} \subset X-U. This implies that $U \cap U\{\alpha \ cl(\{a\}):a \in A\}$ = Φ .Thus x is not a α limiting point of U{ τ $cl({a}):a\in A$ and this shows that $U{s-cl({a}):a\in A}$ is α closed.

Remark 3. The result of above theorem is not true in a space. If we take $A=\{a\}$ the previous example then result will follow.

Theorem 7. In a α R1 space (X,τ) , if A is α bi compact then U{ α cl({a}):a \in A} is α closed iff union of an arbitrary number of α open sets whose complement is the α closure of a α bicompact set is α open.

Proof .Let G be an arbitrary union of α open sets such that X-G= α -cl(A), where A is α bi compact .Let A*= U{ α -cl({a}):a \in A} .Then A* is α closed. Also since A \subset A*, α cl(A) \subset A*.Clearly A* $\subset \alpha$ - cl(A).Hence X-G= α -cl(A)=A*.Since A* is α closed ,G is α open.

Conversely let the condition be hold .Let A be a α bi compact set .Let y does not belongs to A*, so that y does not belongs to α - cl{a}: for all a \in A.

Since (X,τ) is α R1 there exist α open sets Ua , Va such that $y \in Ua$, $a \in Va$ and $Ua \cap Va = \Phi$.Now {Va : $a \in A$ } is an α open cover of A. Since A is α bi compact there exist finite number of points a1,....an \in A such that $A \subset U$ { V _{ai} :i=1,2,...}=Vy, Let Uy = \cap {U_{ai} :i=1,2,...}. Then $y \in Uy$, $A \subset Vy$ and $Uy \cap Vy = \Phi$. Now $A \subset$ Vy \subset X-Uy, where X - Uy is α closed .So α cl (A) \subset X-Uy and y does not belongs to X-Uy. Therefore y $\notin \alpha$ cl (A). So α cl (A) \subset A*. Again clearly A* $\subset \alpha$ -cl (A). Hence α cl (A)= A*. So X-A*=X- α cl (A)= U{X-F:F is a α closed set containing A}. Thus X - A* is arbitrary union of α open sets whose complement A*= α - cl (A) is the closure of a α bi compact set A. Hence X - A* is α open and so A* is α closed.

References:

- Alexandroff, A.D., "Additive set functions in abstract spaces", Mat. Sb. (N.S.) (English, Russian summary)vol. 8(Issue 50) pp. 307–348 (1940).
- [2] Alexandroff, A.D.," Additive set functions in abstract spaces", Mat. Sb. (N.S.) (English, Russian summary) vol. 9(Issue 51), pp. 563–628(1941).
- [3] Das, P. and Samanta, S.K., "Pseudotopological spaces", Sains Malaysiana, vol .21(Issue 4) pp,101–10(1992).
- [4] Das Pratulananda and Rashid M.A.
 "Certain Separation Axioms in a Space", Korean J. Math .Sciences vol.7 pp.81-93(2000).
- [5] Lahiri B.K. and Das Pratulananda ,"Semi open sets in a space", Sains Malayasiana, vol. 24(Issue 4) pp.1-11(1995).
- [6] Mashhour, A. S., Allam, A.A., Mahmoud, A.A. and Khedr, F.H., "On supratopological spaces", Indian J. Pure Appl. Math. Vol.14(Issue 4) pp. 502– 510(1983).
- [7] Njastad O. ," On some classes of nearly open sets", Pacific J. Math., vol. 15 pp.961-970 (1965).
- [8] Reilly I. L. and Vamanamurty M.K.," On α sets in topological spaces", Tamkang J. Math., vol. 16 pp.7-11 (1985).
- [9] Reilly I.L., "On essentially pair wise Housdorff spaces", Rendiconti del circolo mathematics Di Palermo, Serie II-tomo XXV, Anno pp. 47-52 (1976).
- [10] Singal .M.K. and Arya .S.P. ,"On almost regular spaces", Glasnik Mathematicki,Tom vol. 4(Issue 24) ,No. 1 pp. 89-99(1969).
- [11] Singal .M.K. and Arya .S.P." Almost normal and Almost completely regular spaces", Glasnik Mathematicki ,Tom vol.5(Issue 25) ,No. 1 pp.140-151(1979).