

ISSN 2455-6378

Preparation and Characterization of CaTiO₃ Nanopowder by Using Sol-gel Method

S. Anjelin Ursula Portia¹, K. Ramamoorthy²

¹Research scholar of Physics Research and Development Centre, Bharathiar University, Coimbatore – 641 046, India

² Department of Physics, Govt. Arts & science College, Komarapalayam - 638183, India

Abstract

The aim is to prepare perovskite type of $CaTiO_3$ nanopowder using sol-gel method. The prepared samples were characterized by different highly developed techniques. The Structural investigation of nanopowder was investigated by using X-ray Diffraction Method (XRD). The Functional groups were analyzed by using Fourier Transform Infrared Spectrophotometer (FTIR). The Surface Morphology was analyzed by using Scanning Electron Microscopy (SEM). The elemental Composition was deliberate by using Energy Dispersive X-Ray Spectroscopy (EDAX) . The bandwidth was obtained by Ultra - Violet visible Infrared Spectroscopy (UV-vis DRS), and the Microstructure investigation were performed by using high resolution transmission electron spectroscopy (HRTEM). This method is convenient, low cost, easy, simple, and effective in evaluation to the known methods of the synthesis of nanopowders. Key words: CaTiO₃, nanopowder, sol-gel.

1. Introduction

Titanium Dioxide has a broad range of applications, such as ultraviolet filters for optics and packing materials transparent conductors [1], [2], antireflection coatings for photovoltaic cells and passive solar collectors [3], humidity sensors [4], electro chromic displays [5], anodes for lithium-ion batteries [6], gas sensors [7], photo catalysts for purification and treatment of water and air [8], and self cleaning coatings of windows and tiles [9], These oxides have some characteristics such as pyroelectrical, dielectrical, ferroelectric, photo restrictive, piezoelectric, magneto restrictive, and electro-optical characters [10, 11].

Calcium Titanate, being one of the member of this Family. It can be in different applications

such as dielectric resonators in wireless communication system [12], biomedical, [13], photo catalytic [14] and communication equipment operating at microwave frequencies [15]. It has assortment of attraction amongst the researchers because of their friendly environment, luminescence properties and well- known chemical stability.

Many methods have been reported in literature for preparing CaTiO₃ nanopowders. This type of perovskite was firstly prepared by conventional solid state reaction at room temperatures 1623k [16]. In this method we observed a numeral of problem, such as in-homogeneity, high -processing temperatures and contamination by impurities with a non uniform particle sizes distribution[17]. These problems can be abridged by wet chemical methods. So wet chemical methods have been employed for the preparation of CaTiO₃ nanopowders, such as co-precipitation [18], hydrothermal process[19], combustion method[20], organic-inorganic solution technique[21] and solgel[22]. The optical behavior depends preparation method, structural organization and heat treatment conditions [23].

Sol-gel method is a hopeful method that offers relative low price tag, harmonized, identical size, and high transparency of the ceramics. In this study, we have reported about the $CaTiO_3$ nanopowder prepared by using sol-gel technique. The powder sample was characterized by using XRD, FTIR, SEM, EDAX, UV and HRTEM

2. Experimental Section

2.1 Materials Used

The chemicals used in this preparation were Calcium chloride (CaCl₂) as a source for calcium, Titanium (IV) isopropoxide (Ti(OC₄H₉)₄) as a source for titanium, citric acid ,ethanol and ultra

ISSN 2455-6378

pure water were the solvents. All reagents were used as received without any further refinement.

2.2 Sample Preparation

The nanopowder was prepared by using sol-gel method. For this synthesis a solution of Ca: Ti: Citric acid: ethanol mole ratio 1: 1: 1:1 was magnetic stirred and evaporated at 70° C for 2 hours. Then it was dried out in a hot plate for overnight and the solvent was removed by heating to at 100° C. The resulting powder was annealed at different temperatures like 500° C , 700° C and 900° C for 2 hours in a muffle furnace. The annealed samples were crushed in a mortar to form CaTiO₃ nanopowder.

2.3 Characterization of Eu : CaTiO₃ Nanopowder

The annealed CaTiO₃ samples were characterized by different advanced techniques. The Structural analysis was monitored by X-ray Diffractometry (XRD) in the 2 Θ range from 5° to 90°. The FTIR micro-analysis were carried out and it covers the range of wave numbers from 400 to 4000 cm⁻¹. The Surface Morphology were measured using Scanning Electron Microscopy (SEM). The elemental composition was studied using Energy Dispersive X-Ray Spectroscopy(EDAX), The Optical band gap was recorded by using Ultra - Violet visible Infrared Spectroscopy (UV-vis DRS), and the Microstructure analysis was investigated by using High Resolution Transmission Electron Spectroscopy(HRTEM).

3. Results and Discussions

3.1 X-Ray Diffraction Analysis

The structure and crystallite size was analyzed by X-ray diffraction (XRD) using Bruker diffractometer within the 2 θ range of 5° to 90° using CuK α as X-ray source (λ =1.5406Å). The following formulas were used in the calculations:

The crystallite size of the nanopowder was

calculated based on Scherer's equation

as reported in the literature[24], the Scherrer's equation is described as follows:

$$\mathbf{D} = \frac{\mathbf{K}\lambda}{\mathbf{\beta}\mathbf{COS}\mathbf{\theta}} (\mathrm{nm}) \quad \text{----- Eq. (1)}$$

Where, D - mean crystallite size, K - shape factor taken as 0.94, λ - wavelength of the incident beam, β - full width at half maximum and θ - Bragg angle.

$$2d_{hkl} \sin(\theta) = n\lambda$$
 ------ Eq. (2)

Where, d is the spacing between the planes in the atomic lattice. h, k, and l are all integers, (hkl) is the lattice plane index, a, b and c are lattice constants, d_{hkl} is the distance between two consecutive planes (n=1) with plane index (hkl). The Dislocation density is calculated by:

$$\delta = \frac{1}{\mathbf{p}^2}$$
 lines/m² ----- Eq. (3)

The Micro strain is calculated by using the equation:

$$s = \frac{d}{D\sqrt{12}}$$
 ------ Eq. (4)

The strain is calculated by using the equation:

$$\boldsymbol{\eta} = \frac{\boldsymbol{\beta} \cos \boldsymbol{\theta}}{4} \quad \text{------ Eq. (5)}$$

Table 1: Parameters of CaTiO3 nanopowder in a sol-gel method

S.No	Parameters	700°C	900°C
1	Max peak (20)	33.19	33.29
2	FWHM (β) (degree)	0.31725	0.26981
3	Interplanar spacing (d) (Å)	2.766	2.7579
4	Particle size (D) (nm)	26.823	31.539
5	Strain η	1.38E-03	1.18E-03
6	Dislocation density (ρ) l/m^2	1.39E+15	1.01E+15
7	Micro strain (s)	2.98E-03	2.52E-03

The increasing the temperature leads to the formation of CaTiO₃ phase. Comparing the annealing temperature, at 900°C the sample displayed a good crystallization. Above 1580 °C the structure of CaTiO₃ is Cubic ,between 1500 °C to 1580 °C it is tetragonal, below 1500 °C it is orthorhombic[29,30]. All the diffraction peaks can be assigned to the orthorhombic structure is shown in fig.1

Fig.1. XRD pattern of CaTiO₃ nanopowder annealed at different temperature in Sol-gel method

Raise of temperature cause an increase in the crystallite size is shown in fig.2. This behavior

ISSN 2455-6378

can be associated with the aggregates production and nuclei formation[31]. CaTiO₃ phase was conformed by the assessment between the XRD patterns with the JCPDS card no. 88-0790. Table 2. Shows Lattice Parameters of CaTiO₃ nanopowder prepared by solgel method.

SR

Fig 2. Particle sizes as a function of heat treatment of CaTiO₃ nanopowder in sol-gel method

Table 2: Lattice Parameters of CaTiO₃ nanopowder prepared by sol-gel method.

S.No	Lattice parameters	JCPDS (88-0790)	700°C	900°C
	a (Å)	5.378	5.389	5.5159
	b(Å)	5.444	5.6531	5.4929
	c(Å)	7.637	7.9026	7.8018

3.2 FTIR Analysis

FTIR examination was performed for the sample annealing temperature at 900°C. Fig.3 shows the FTIR spectra of CaTiO₃ nanopowder prepared by sol-gel technique

Table 3 gives the FTIR analysis of $CaTiO_3$ nanopowder. The band at 3395.85 cm⁻¹ was related to the super position of the vibration

band of the hydroxyl group and the stretching vibration of the adsorbed water molecule. The C-H stretching band is occurred at 2925.74 cm⁻¹. C \equiv N stretching Alphatic nitriles is occurred in 2086.28. The band at 1632.75 cm⁻¹ is due to symmetric stretching vibrational modes of metal-oxygen bond. The C-H bending bond is occurred at 1385.09 cm⁻¹. The C-O stretching bond is occurred 1118.78cm⁻¹. A band around 619.28 cm⁻¹, 564.51cm⁻¹ and 436.89cm⁻¹ are caused by stretching vibration due to interactions produced between the oxygen and the metal bonds.

Table 3: FTIR analysis of CaTiO3 nanopowder prepared by sol-gel technique

S.No	Wave number cm ⁻	Functional group	Types of vibrations	Intensity	Class of Compounds
1	3395.85	О-Н	Stretching, H- bonded	Strong, Broad	Alcohols
2	2925.74	C-H	Stretching	Strong	Alkane
3	2086.28	$C \equiv N$	Stretching	Strong	Alphatic nitriles
4	1632.75	C=C	Stretching	Variable	Alkenes
5	1385.09	C-H	Bending	Strong	Methyl groups
6	1118.78	C-O	Stretching	Strong	Carbonyl groups
7	619.28	C-Cl	Stretching	Strong	Alkyl Halide
8	564.51	C-Cl	Stretching	Strong	Alkyl Halide
9	436.89	C-Cl	Stretching	Strong	Alkyl Halide

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 2018

www.ijasrm.com

ISSN 2455-6378

3.3 Surface Morphology Analysis

JASRN

Fig.4 shows the SEM analysis of $CaTiO_3$ nanopowder prepared by sol-gel method.

Fig.4 .SEM analysis of CaTiO₃ nanopowder prepared by sol-gel method

From the above figures we can conclude that the product show foamy .The particles are nearly spherical in shape.

3.4 Energy Dispersive X-Ray Spectroscopy Analysis

The EDAX measurement of the CaTiO₃ nanopowder is shown in Fig.5. The EDAX analysis indicated that the nanostructures are composed of Ca, Ti, and O atoms and it exhibits clear peaks of only Ca, Ti, and O elements, whereas no extra peaks were detected, which means that the CaTiO₃ powder is exempted from impurities.

Fig. 5. EDAX $\,$ analysis of CaTiO_2 nanopowder prepared by sol-gel method $\,$

Table 4 shows that the atomic and weight percentage of CaTiO₃ powder

Table 4 : EDAX analysis of CaTiO3 nanopowder

S.No	Element	Series	Weight %	Atomic %
1	0	K	44.30	69.87
2	Ca	K	22.68	14.83
3	Ti	K	28.02	15.30

3.5 Ultra - Violet Visible Infrared Spectroscopy Analysis

The optical properties of $CaTiO_3$ nanopowder was analyzed by UV-VIS diffusion reflectance spectroscopy using CARY 5E UV-VIS-NIR spectrophotometer (wavelength :**200 – 900 nm**). UV absorption spectra of CaTiO₃ nanopowder was obtained from the diffuse reflectance data by using the Kubelka-Munk function[32]. The optical band gap energy was 3.0ev corresponds to optical absorption edge of 380 nm . Fig .6. shows the Optical band gap calculation of CaTiO₃ nanopowder

Fig .6. Optical band gap calculation of CaTiO₃ nanopowder prepared by sol-gel method

ISSN 2455-6378

Microsopy

esolution Transmission Electron

The microstructure of $CaTiO_3$ nanopowder was examined by HRTEM. Fig 7a is the high –resolution image of $CaTiO_3$ nanopowder which exhibits the clear lattice fringes. The interlayer spacing 0.19nm is corresponds to (004) plane of $CaTiO_3$. Fig.7b shows the selected area electron diffraction (SAED) pattern of $CaTiO_3$ nanopowder calcined at 900°C.

Fig. 7 a,b.c: HRTEM micrographs of CaTiO₃ nanopowder calcined at 900°C prepared by sol-gel method

The circular bright continuous rings in the SAED pattern reveals the fact that particles where nanosized and confirmed the crystalline nature of nanopowder. Fig.7c shows the grains of the of CaTiO₃ nanopowder has not equal shape.

4. Conclusion

CaTiO₃ nanopowder prepared by using sol-gel method at low temperature calcinations . The sample was characterized by various advanced techniques. Particles were spherical in shape and the Particle size was varied from 26 - 31 nm, and the lattice parameters a, b. c are matched with JCPDS card no (88-0790). The functional group was analyzed by using FTIR analysis. The compositional analysis was analyzed by using EDAX analysis, it exhibits clear peaks of only Ca, Ti, and O elements. The band width is calculated from UV-VIS diffusion reflectance spectroscopy and it is 3.0ev. The interlayer spacing 0.19nm is corresponds to (004) plane of CaTiO₃.

Reference

- Ivanova T, Harizanova A, Surtchev M, Nenova Z, Investigation of sol-gel derived thin films of titanium dioxide doped with vanadium oxide. Sol Energy Mater Sol Cells 76:591–598, (2003)
- [2] Lansaker PC, Backholm J, Niklasson GA, Granqvist CG, TiO2/Au/TiO2 multilayer thin films: novel metalbased transparent conductors for electrochromic devices. Thin Solid Films 518:1225–1229, (2009).
- [3] Shan MN, Wang SS, Bian ZQ, Liu JP, Zhao JL, Hybrid inverted organic photovoltaic cells based on nanoporous TiO2 films and organic small molecules. Sol Energy Mater Sol Cells 93:1613–1617, (2009).
- [4] Su PG, Huang LN ,Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sens Actuators B Chem 123:501–507, (2007).
- [5] Toma SH, Toma HE, Versatile electrochromic displays based on TiO2 nanoporous films modified with triruthenium clusters. Electrochem Commun 8:1628– 1632, (2006).
- [6] He BH, Dong B, Li HL ,Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun 9:425–430, (2007).
- [7] Mohammadi MR, Fray DJ, Semiconductor TiO2– Ga2O3 thin film gas sensors derived from particulate sol–gel route. Acta Mater 55:4455–4466, (2007).
- [8] Ao CH, Lee SC , Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem Eng Sci 60:103–109, (2005).
- [9] Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J ,Selfcleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J Mol Catal A Chem 244:160–167, (2006).
- [10] Montenero A, Canali M, Gnappi G, Bersani D, Lottici PP,Nunziante P, Traversa E ,Structural and electrical properties of sol-gel processed CdTiO3 powders and films. Appl Organomet Chem 11:137–146, (1997).

ISSN 2455-6378

[11] . Zhang X, Wang H, Huang A, Xu H, Zhang Y, Yu D, Wang B,Yan H , Synthesis of cadmium titanate powders by a solgel- hydrothermal method. J Mater Sci 38:2353–2356, (2003).

ASR

- [12] S.Y. Lee, M.C.C. Custodio, H.J. Lim, R.S. Feigelson, J.P. Maria, S. Trolier- McKinstry, J. Cryst. Growth 226 -247, (2001).
- [13] Stanishevsky AV, Holliday S, Mechanical properties of sol-gel calcium titanate bioceramic coatings on titanium. Surf Coat Technol 202:1236–1241, (2007).
- [14] Zhang D, Zhang CL, Zhou P , Preparation of porous nano calcium titanate microspheres and its adsorption behavior for heavy metal ion in water. J Hazard Mater 186:971–977, (2011).
- [15] Kim JS, Cheon CI, Kang HJ, Lee CH, Kim KY, Nam S, Byun JD, Crystal structure and microwave dielectric properties of CaTiO₃(Li1/2Nd1/2)TiO3– (Ln1/3Nd1/3)TiO3 (Ln = La, Dy) ceramics. Jpn J Appl Phys 38:5633–5637, (1999).
- [16] H.F. Kay, P.C. Bailey, Structure and properties of CaTiO3, Acta Cryst. 10: 219–226, (1957).
- [17] I.R. Evans, J.A.K. Howard, T. Sreckovic, M.M. Ristic, Variable temperature in situ X-ray diffraction study of mechanically activated synthesis of calcium titanate, CaTiO3, Mater. Res. Bull.38: 1203–1213, (2003).
- [18] M. Muthuraman, K.C. Patil, S. Senbagaraman, A.M. Umarji, Sintering, microstructural and dilatometric studies of combustion synthesized synroc phases, Mater. Res. Bull. 31:1375–1381, (1996).
- [19] T.R.N. Kutty, R. Vivekanandan, P. Murugaraj, Precipitation of rutile and anatase (TiO2) fine powders and their conversion to MTiO3 (M= Ba, Sr, Ca) by the

hydrothermal method, Mater. Chem. Phys. 19:533–546, (1988).

- [20] X. Zhang, J. Zhang, X. Ren, X.-J. Wang, The dependence of persistent phosphorescence on annealing temperatures in CaTiO3:Pr3+ nanoparticles prepared by a coprecipitation technique, J. Solid State Chem. 181 :393–398, (2008).
- [21] S.J. Lee, Y.C. Kim, J.H.Hwang, An organic-inorganic solution technique for fabrication of nano-sized CaTiO3 powder, J. Ceram. Process. Res. 5 :223–226, (2004).
- [22] G. Pfaff, Synthesis of calcium titanate powders by the sol–gel process, Chem. Mater. 6 :58–62, (1994).
- [23] L.S. Cavalcante, M.F.C. Gurgel, E.C. Paris, A.Z. Sim oes, M.R. Joya, J.A. Varela, P.S.Pizani, E. Longo, Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films, Acta Mater. 55 :6416–6426, (2007).
- [24] C. Suryanarayana, M.G.Norton, X-Ray Diffraction: A Practical Approach, Plenum Press, New York, 1998.
- [25] Jianhua Hao, Weidong Si, X. X. Xi, Ruyan Guo, AS. Bhalla, LB. Cross, Applied Physics Letters, 76:2100-3100, (2000).
- [26] H. Veenhuis, T. Borger, K. Peithmann, M. Flaspohler, K. Buse, R. Pankrath, H.Hesse, E. Kratzig, Appl. Phys. B 790-797, (2000)
- [27] G. Zhou, M. L " u, F. Gu, D. Xu, D. Yuan, J. Cryst. Growth 276 :577–582, (2005).
- [28] Phosphor Handbook edited under the Auspices of Phospor Research Society,editorial committee cochairs: Shigeo Shionoya, William M. Yen, CRC Press, Boca Raton Boston London, Newyork, Washington DC, p. 763, 1999.