

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 2018

 www.ijasrm.com

 ISSN 2455-6378

149

Analysis of different approaches for code smell

detection

S.James Benedict Felix
1
 and Dr.Viji Vinod

2

1
Research Scholar, Bharathiar University,

Coimbatore, Tamil Nadu, 641 046, India.

2
Professor & Head, Department of Computer Applications,

Dr.MGR Educational and Research Institute University,

Chennai, Tamil Nadu, 600 095, India.

Abstract

Bad smells are signs of latent problems in codes.

Bad smells reduce the design value of software, so

the codes are hard to analyze, understand, test or

reprocess. Code-Smells represent design situations

that can concern the maintenance and evolution of

software. They make a system difficult to progress.

Some code smells cannot be detected by using

program analysis alone. In such cases, software

metrics are adopted to help identify tools.

However, the choice of suitable quality metrics is

challenging due to the absence of accord to identify

some code-smells based on a set of symptoms and

also the high calibration effort to determine

manually the thresholds value for each metric. In

this paper, we discussed about detecting code

smells using various approaches.
Keywords: Machine Learning Approach, GUI-based
approach, Textual Based Approach, A Bayesian

Approach, Parallel Search Approach, Genetic

Algorithm-based approach.

1. Introduction
There exist many approaches to specify

and detect code smells. Most of these approaches

are manual or based on rules. Although these

approaches improved the state of the art and of the

practice in smell detection, to the best of our

knowledge, none is able to handle the inherent

uncertainty of the detection. Quality programs are

easy to understandable, analyzable, modifiable,

testable, maintainable and reusable. To the best of

our knowledge, all previous approaches require

expert knowledge and interpretation of the smell

for their implementation. They focus on identifying

one smell at a time, while some smells share

similar characteristics, and exclude classes that are

not identical to the smell (given some thresholds).

Various technologies are used for detecting code

smells.

2. The Benefits of a Code Refactoring
Code refactoring is the process of

reforming the existing program code. Refactoring

gets better nonfunctional attributes of the software

and can improve source code maintainability. It

improves code readability and decreases

complexity. It creates an additional expressive

internal architecture or object model to progress

extensibility. There are two general categories of
benefits to the activity of refactoring.

a) Maintainability. It is very easier to fix bugs

because the source code is easy to read and the

intent of its author is easy to grasp. This might be

achieved by decreasing large monolithic routines

into a set of individually concise, well-named,

single-purpose methods. It may be accomplished

by a class by moving a method or by removing

misleading comments.

b) Extensibility. It is easier to expand the capabilities

of the application if it uses identifiable design

patterns, and it provides some flexibility where

none may have existed before (M. Fowler, 1999).

3. Various approaches for Code Smell

Detection
Many code smell detection tools have

been developed providing different results, because

smells can be subjectively interpreted, and hence

detected, in different ways. Here, we discussed

various approaches such as

 Machine learning approach

 GUI-based approach

 A Textual based Approach

 A Bayesian Approach

 Parallel Search Approach

 Genetic Algorithm based

Approach

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 2018

 www.ijasrm.com

 ISSN 2455-6378

150

3.1 Machine Learning Approach

The application of machine learning to the

code smell detection problem requires a

formalization of the input and output of the

learning algorithms, and a selection of the data to

be analyzed and the algorithms to use in the

experimentation. A huge set of object-oriented

metrics, covering dissimilar aspects of software

design, have been computed on a huge repository

of heterogeneous software systems. A set of code

smells to detect has been recognized, representing

the dependent variables. For each and every code

smell, a set of example instances have been

manually assessed and labeled as correct or

incorrect (affected or not by a code smell). The

selection and labeling phase is an important role in

machine learning techniques. Our approach selects

the example instances by applying stratified

random sampling on many projects, by the results

of a set of pre-existing code smell detection tools

and rules, called Advisors. This methodology

guarantees a homogeneous selection of instances

on different projects and prioritizes the labeling of

instances with a higher chance of being affected by

a code smell. The selected instances are used to

train a set of machine learning algorithms, to

execute experiments evaluating the performance of

different algorithms and to search for the best

setting of their parameters.

Some of the principal steps of Machine

learning approach,

1. A Collection of a huge repository of

heterogeneous software systems.

2. Extract a large set of object-oriented metrics

from systems at class, method, package and project

levels.

3. Choice of tools, or rules, for their detection; they

are called Advisors in the following.

4. Application of the chosen Advisors on the

systems, recording the results for each class and

method.

5. Labeling: following the output of the Advisors,

the reported code smell candidates are manually

evaluated, and they are assigned different degrees

of gravity.

The manual labeling is used to train

supervised classifiers, whose performances (e.g.,

precision, recall, and learning curves) will be

compared to find the best one (F. Arcelli Fontana et

al, 2013).

3.2 GUI-based Approach

 The aim of Bad smells detection is to

address the software quality. For that purpose, the

bad smell is to be defined and searched in the

source code. Bad smells are commonly grouped

into two types: (i) Internal and (ii) External.

 Internal bad smells are obtained from the

source code and provide information to improve

software development. With our approach, we can

get internal bad smells from source code through a

reverse engineering process. Internal bad smells are

structural characteristics of source code that may

indicate a code or design problem. Internal bad

smell has 22 different kinds of smells, being useful

to enhance software’s internal quality through

refactoring process. Fowler specified different

types of code smells, like:

Duplicated Code: means that the same code

structure appears in more than one place;

Feature Envy: means that a method is in the

wrong place since it is more tightly united to the

other class than to the one where it is currently

located;

God Class: It means class that tends to complete

too much work;

Large Class: refers to classes that have too many

instance variables or methods;

Considering different types of bad smells,

we aim to detect them and discuss some of the

relevant problems which we have to face for their

automatic detection in interactive systems. To

achieve that purpose adequate metrics must be

specified and calculated.

External bad smells are defined in relation

to running software. In concerns GUIs, external

bad smells can be used as usability indicators.

However, external bad smells are not accessible

from source code analysis, rather through user’s

feedback (Brad A.Myers, 1999).

3.3 Textual Based Approach

The textual-based approach for detecting

smells in the source code, coined as TACO

(Textual Analysis for Code smell detection), has

been instantiated for detecting the Long Method

smell and has been evaluated on three Java open

source projects. The results indicate that TACO is

able to detect between 50% and 77% of the smell

instances with a precision ranging between 63%

and 67%. In addition, the results show that TACO

identifies smells that are not identified by

approaches based on the solely structural

information. We evaluate the accuracy of TACO in

detecting Long Method smell instances in three

software systems, namely Apache Cassandra1,

Apache Xerces2 and Eclipse Core3. Besides the

analysis of the accuracy of TACO, we also

compare the proposed approach with a structural-

based technique, namely DECOR. In order to

evaluate the accuracy of the experimented

techniques, we compare the set of Long Method

instances identified by a specific technique with the

set of instances manually identified in the object

system. Details on how these smells have been

manually identified can be found in the paper by

Palomba et al. Then, we measure the accuracy of

the experimented techniques by using three widely-

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 2018

 www.ijasrm.com

 ISSN 2455-6378

151

adopted Information Retrieval (IR) metrics, namely

recall, precision, and F-measure. In addition, we

also measure the overlap between TACO and

DECOR by measuring the smell instances

identified by both the technique (TACO ∩

DECOR), the instances identified by TACO only

(TACO \ DECOR) and the instances identified by

DECOR only (DECOR \ TACO). The use of

textual analysis is actually useful to avoid the

identification of many false positive candidates, but

also to detect instances of Long Method that the

structural technique is not able to detect.

3.3.1 The proposed code smell detection process

Figure 1 depicts the main steps used by

TACO in order to compute the probability of a

code component being affected by a smell, which

are (i) Textual Content Extractor, (ii) IR

Normalization Process, and (iii) Smell Detector.

Fig 1: TACO: The proposed code smell

detection process

Content (Textual) Extractor: Beginning from the

set of code artifacts composing the software project

under analysis. The first step is responsible for the

extraction of the textual content characterizing each

code component by selecting only the textual

elements actually needed for the textual analysis

process.

Information Retrieval Normalization Process:
Comments and Identifiers of each component are

firstly normalized by using a typical Information

Retrieval (IR) normalization process. Therefore,

the terms hold in the source code are transformed

by applying the following steps: (i) separating

composed identifiers using the camel case splitting

which splits words based on capital letters,

numerical digits and underscores; (ii) reducing to

lower case letters of extracted words; (iii)

eliminating special characters, programming

keywords and common English stop words; (iv)

stemming words to their original roots via Porter’s

stemmer. Then, the normalized words are weighted

using the term frequency - inverse document

frequency (tfidf) schema, which reduces the

relevance of too generic words that are contained in

most source components.

Then the normalized textual content of

each code module is then separately evaluated by

the Smell Detector, which applies various

heuristics to recognize target smells. The detector

relies on Latent Semantic Indexing (LSI), an

extension of the Vector Space Model (VSM). LSI

uses Singular Value Decomposition (SVD) to

cluster code components according to the

associations among words and among code

components (co-occurrences). After that, the

creative vectors (code components) are projected

into a reduced k space of concepts to limit the

effect of textual noise. For the choice of size of the

decreased space (k) we used the heuristic proposed

by Kuhn et al. that granted good quality results in

many software engineering applications, i.e., k =

(m_n) 0:2 where m indicates the size of vocabulary

and n indicates the number of documents (code

components in our case).

Finally, the textual similarity among

software components is measured as the cosine of

the angle between the corresponding vectors. The

similarity values are then united in different ways,

according to the type of smell we are interested in,

to gain a probability that a code section is actually

smelly. For detection purpose, we convert such a

probability in a real value in the set ftrue, falseg to

indicate whether a given code component is

affected or not by a specific smell.

3.4 A Bayesian Approach

BBNs (Bayesian Beliefs Networks) have

been successfully used to model uncertainty in

fields as diverse as risk management, medicine, and

computer science. We propose to use BBNs to

specify and detect smells.

A Bayesian Belief Network is a directed,

acyclic graph that represents a probability

distribution. In this graph, a node is identified by

random variable Xi. A directed edge between two

nodes indicates a probabilistic dependency from

the variable denoted by the parent node to that of

the child. Thus, the structure of the network

represents the every node Xi in the network is only

conditionally dependent on its parents. Each node

Xi in the network is associated with a conditional

probability table that species the probability

distribution of all of its probable values, for every

possible combination of values of its parent nodes.

A quality analyst requires two pieces of

information to build a BBN: the structure of the

network, in the form of arcs and nodes (causal

relations), and the conditional probability tables

describing the decision processes between each

node. By structuring the network, the quality

analyst makes ensure that the decision process is

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 2018

 www.ijasrm.com

 ISSN 2455-6378

152

valid. The conditional probabilities can be learned

using historical data or entered directly by the

analysts when data is missing. The structure make

ensures the qualitative validity of the approach

while proper conditional tables (learned or entered

manually) ensure that the model is well calibrated

and is quantitatively valid (N. Fenton and M. Neil,

2007).

3.4.1 Comparison with other Techniques

There are many techniques capable of

modeling uncertainty. The two most popular

groups of techniques are statistical models and

machine learning models. Both groups rely on the

availability of historical data to correctly predict a

phenomenon with certainty. However, these types

of models must be trained on large amounts of

tagged data to be effective (each datum describing

the inputs and correct outputs). In the context of

smell detection, organizations rarely keep track of

past detected smells and there is no public database

containing instances of smells. Consequently, these

techniques are not easily and directly applicable to

smell detection. Furthermore, they use black-box

processes not suitable for quality analysts who

want to encode their knowledge in the process.

BBNs can work with missing data and allow

quality analysts to specify explicitly the decision

process. When data is unavailable or must be

adapted to a different context, an analyst can

encode her judgment into the model. In the context

of smell detection, this structuring is important

because there are usually only a few instances of

smells in a program; hence, a database of smell

instances would be generally too small for other

types of models while the literature contains many

analysts' judgments on smells, which can be used to

structure BBNs (R. G. Cowell et al, 2007).

3.5 Parallel Search Approach

 There are some motivations behind the use

of parallel computing for the design and

implementation of parallel metaheuristics. Firstly,

parallel search approach permits speeding up the

search process by reducing the search time.

Secondly, the getting solutions may be extensively

improved. Cooperative metaheuristics have been

established to explore the fitness landscape more

efficiently on different problems such as the defect

identification problem. This is recognized by

portioning the search space and then swapping

information between the various search methods

which permits examining the search space

proficiently. Thirdly, the uses of different

metaheuristics concurrently in solving a particular

problem decrease the sensitivity to the parameter

values. Certainly, every search method would be

launched with a special parameter value set which

is dissimilar from the others ones. Thus, the search

process would work according to several various

parameter value sets which may augment the

robustness of the obtained results. Finally, parallel

distributed metaheuristics permits handle the

problematic of scalability. Several problems

actually involve a very large number of decision

variables (called large-scale problems), a huge

number of objectives (called many objective

problems), a huge number of constraints (called

highly constrained problems), etc. Parallel

distributed metaheuristics can represent one

possible remedy to tackle such problems.

Designing parallel metaheuristics contain different

existing models. It follows the following three

hierarchical levels:

• An Algorithmic level: In this parallel model,

independent or cooperating self-contained

metaheuristics are used. It can be identified as a

problem-independent inter-algorithm

parallelization. If the different metaheuristics are

independent, the search will be correspondent to

the sequential execution of the metaheuristics in

terms of the quality of solutions. However, the

cooperative model will modify the behavior of the

metaheuristics and enable the development of the

quality of solutions.

• Iteration level: In this level, metaheuristic

iterations are parallelized. It is a problem-

independent intra-algorithm parallelization. The

metaheuristic behavior is not modified. The main

goal of this level is speeds up the algorithm by

reducing the search time. In fact, the iteration cycle

of metaheuristics on large neighborhoods for

trajectory-based metaheuristics or large populations

for population-based metaheuristics requires many

computational resources.

• Solution level: In this model, the parallelization

process manipulates a single solution from the

search space. It is a problem-dependent intra-

algorithm parallelization. In general, evaluating the

objective function(s) or constraints for a particular

generated solution is almost always the most costly

operation in metaheuristics. In this model, the

metaheuristic behavior is not altered. The main

goal is the speed up of the search (W. Kessentini et

al, 2014).

3.6 Genetic Algorithm Based Approach
Genetic Algorithms (GAs) are

evolutionary algorithms motivated by the

Darwinian theory of natural evolution. They

simulate the progress of species emphasizing the

law of survival of the nearly-best to resolve

optimization problems. Thus, these algorithms start

from a set of initial individuals (i.e. solutions), and

to use naturally inspired evolution mechanisms to

receive new and possibly enhanced solutions which

gives the good approximation of the optimum for

the problem under examination. The Genetic

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 2018

 www.ijasrm.com

 ISSN 2455-6378

153

Algorithms depends on the following three key

factors: (i) an individual representation used to

encode a answer to the problem; (ii) a fitness

function which is a mean to evaluate the value of a

given individual; and (iii) transform operators

which are used to produce new nearest solutions

starting from existing ones. Generally, GA

proceeds using the prior elements, as follows: first

it randomly generates an initial population, and

then it executes crossovers and mutations on the

fittest elements of this population until the chosen

number of generation is reached. (Salim Kebir et

al., 2016)

G_A(numofGenerations : Int) : Population

Begin

i = 0;

p = initialPopulation();

while i < numofGenerations do

p’ = SELECT(p);

CROSSOVER(p0);

MUTATE(p0);

p‘= p0;

i =i + 1;

end while

return p;

End
Genetic Algorithm

3.6.1 Individuals

In our approach, individuals are composed of two

elements:

 Genotype: The genotype which is an

ordered variable-length sequence of

refactoring including necessary

parameters. When the sequence of

refactoring is executed, it performs these

changes and produces a modified version

of the source code model.

 Phenotype: The phenotype is obtained by

performing the sequence of refactoring to

the initial source code model in the order

that is given in the genotype.

This representation has the following key

benefits. First, use of a source code model as a

phenotype to present the component-based

software design enables good computation of bad

smells detection rules. Second, we give the

possibility to the genotype to hold invalid

refactoring.

3.6.2 Fitness function

This function is evaluated on an individual

by (i) running the succession of refactoring

operations hold in its genotype and (ii) evaluating

the detection rules on the resulting source code

model contained in its phenotype.

3.6.3 Change operators

In iteration, the Genetic Algorithm starts

by choosing chromosomes. After that offspring is

generated by applying crossover on each pair to

produce two new chromosomes. Then, the

mutation is applied to each chromosome in the

current population with a given probability. The

following three operators are used for implemented

each of these.

 Selection: All of the population selected

chromosomes will form a mating pool for

the crossover and mutation.

 Crossover: In our approach, we adopt the

one-point crossover operator which

conceptually operates on two genotypes at

a time and generates offspring by cutting

each of the two parent chromosomes into

two subsets of genes. Then two new

chromosomes are created by interleaving

the two subsets.

 Mutation: Our mutation operator either

replaces a randomly chosen refactoring

operation by a new one or randomly

inserts/deletes a new refactoring operation

to the genotype. A mutation is chosen by

the user as an attribute of the GA.

4. Conclusion
Removing more number of bad smells is believed

to improve the quality of the software. The above

approaches are detected code smells using different

methodologies. In this paper, we discussed various

approaches in a different manner to find detection

of code smells. Numbers of tools has been built for

the detection of code smells and were validated on

a different open source software system. Among all

these approaches code smells are identified parallel

manner using Parallel Search. In future work, we

are planning to provide Genetic Algorithm and

Particle Swarm Optimization based framework for

code smell detection.

References

[1] M. Fowler.1999. Refactoring: improving the design

of existing code. Addison-Wesley.

[2] F. Arcelli Fontana, M. Zanoni, A. Marino, M. V.

2013. Mantyla; "Code Smell Detection: Towards

a Machine Learning-Based Approach". 29th IEEE
International Conference on Software Maintenance

(ICSM).

[3] Xiaodong Li, Xin Yao. 2012. Cooperatively

coevolving particle swarms for large scale optimization.

IEEE Transactions on Evolutionary Computation 16(2):

210–224.

[4] P. Siarry and Z. Michalewicz. 2008. Advances in

Metaheuristics for Hard Optimization (Natural

Computing Series). New York, NY, USA: Springer.

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 11, Nov 2018

 www.ijasrm.com

 ISSN 2455-6378

154

[5] Brad A.Myers. 1999. Separating Application Code

from Toolkits: Eliminating the Spaghetti of Call-backs.

School of Computer Science, Carnegie Mellon

University.

[6] R. G. Cowell, R. J. Verrall, and Y. K. Yoon. 2007.

Modeling operational risk with Bayesian networks. In

Journal of Risk andInsurance. 74(4):795-827.

[7] N. Fenton and M. Neil. 2007. Managing Risk in the

Modern World: Applications of Bayesian Networks.

Technical report, London Mathematical Society.

[8] W. Kessentini, M. Kessentini, H. Sahraoui, S.

Bechikh, and A. Ouni. 2014. “A cooperative parallel

search-based software engineering approach for code-

smells detection.” IEEE Transactions on Software
Engineering. pp. 841–861.

[9] Salim Kebir, Isabelle Borne, Djamel Meslati. 2016.

“A Genetic Algorithm for Automated Refactoring of
Component-Based software”. Institute for Computer

Science, Social-Informatics and Telecommunications

Engineering. pp. 221-228.

