

ISSN 2455-6378

Quantitative Screening of Phytochemicals of Different Parts of *Ficus benghelensis* Linn.

I.P. Tripathi¹, Poonam Pandey², Poonam Chaudhary², Mahendra Kumar Mishra³ and Vandana Pathak⁴

1Dean, Faculty of Science and Environment M.G.C.G.V, Chitrakoot Satna (M.P.), India

2Research Scholar, Faculty of Science and Environment M.G.C.G.V, Chitrakoot Satna (M.P.), India

> 3Assistant Professor, Dept. of Botany, Gov. College, Rehti, Sehore (M.P.),India

4Associate Professor, Faculty of Science and Environment M.G.C.G.V, Chitrakoot Satna (M.P.), India

Abstract

The present study was carried out to investigate the and phytochemical screening of quantitative different part of Ficus benghalensis Linn using standard technique. The Methanolic extract of different part of ficus benghalensis were analyzed quantitatively by spectrophotometric method for the phytochemicals: flavonoids, total phenol and flavonols. Phytochemical screening of the plant showed the presence of flavonoid, cardiac glycosides. The quantitative screening of phytoconstituents contained in the different plant extract of the *ficus benghalensis* revealed that flavonol are high 363µg/ml, flavonoid is relatively moderate 129.408 μ g/ml and phenol content is 5.359 μ g/ml. This study vindicates the curative usage of ficus benghalensis in traditional medicine.

Keyword: *Ficus Benghalensis Linn*., Antioxidant, Phytochemical, ascorbic acid

1. Introduction

Plants are utilized extensively as raw drugs for many formulations in traditional systems of medicine^{1,2}. Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary plant metabolites in one or more parts of these plants^{2,3}. The plants have the ability to produce large variety of secondary metabolites such as terpenoids, alkaloids, flavonoids and phenyl propanoids, which together account for 200,000 compounds⁴. Phytochemical are bioactive compound found in plant that work with nutrient and dietary fibers which protect against various diseases⁵.

The most widely occurring group of Phytochemical is flavonoids and phenolic compound present in plant. Biological activity of these groups of Phytochemical was reported in several studies⁶. Phenolic compounds have gained much attention, due to their antioxidant activities and free radicalscavenging abilities, which potentially have beneficial implications for human health. Flavonoids are regarded as one of the most widespread groups of natural constituents found in plants. Polyphenols and flavonoids are used for the cure and prevention of various diseases⁷.

Ficus bengalensis also known as Indian banyan tree⁸ and its belong to the family Moraceae. The imposing banyan tree of poetry and legend is a store-house of invaluable remedies for some of the deadliest diseases⁹. *Ficus benghalensis* which is an indigenous plant possessing reputed medicinal properties, have been listed in Ayurvedic literature^{2,10}. Various scientific studies have been carried out on *Ficus benghalensis* and various pharmacological activities have been reported. It has been reported to possess immunomodulatory, hypoglycemic, antioxidant, antistress and antiallergic, anthelmintic activities¹¹. The main

ISSN 2455-6378

focus is given to the study of phytochemical screening and the quantitative activity of these plants.

2. Materials And Methods

PLANT MATERIALS AND EXTRACTION:

The different plant parts (leaves, bark, fruit, and stem) of *ficus benghalensis* were collected from University campus of MGCGV, Chitrakoot, Satna (M.P. India) washed with water and then washed with methanol and allowed to dry in shade at room temperature. Dried parts of plats grind and passed through 120 no sieve. Take 20g m of sieved powder of *F. benghalensis* then added 100ml (80%) methanol and using cold maturation method for extraction. Extract was filtered through the whatman No.1 filter paper. The filtrate was concentrated under room temperature for dryness.

2.1 Preliminary Phytochemicals Screening

Phytochemical screening performed were using by given standard procedure.

Flavonoids

In 1 ml methanolic extract added 1ml dilute ammonia in a test tube, yellow color appeared then added few drop of conc. H_2SO_4 , yellow color was disappear. Indicate presence of Flavonoids.

Tanni ns

1 ml of the methanolic extract and 2 ml of water was added in a test tube. Then 2 to 3 drops of diluted ferric chloride solution was added and observed for green to blue-green (cathechic tannins) or a blue-black (gallic tannins) coloration.

Carbohydrate

In 2ml of methanolic extract and 1ml molish reagent was added in a test tube. Then added 2 to 3 drop of conc. H_2SO_4 at the side wall of test tube and observed purple and violet color ring at the junction of two liquid.

Reducing Sugar

The methanol extract (1 ml) and 2 drops of boiling Fehling's solution (A and B) was added in a test tube. The formation of a precipitate red-brick in the bottom of the tube indicates the presence of reducing sugars.

Starch

The aqueous extract 5ml was treated with the reagent of the starch (iodine) blue violet color obtain indicates the presence of starch.

Protein

2 ml Methanolic extract of was added 1drap 1% NaOH and 2 drop 1% $CuSO_4$ in a test tube. Blue or purple color is obtained indicates the presence of protein.

Saponins

1 ml of methanolic extract was added and few volume of distilled water in a test tube. The solution was shaken vigorously and observed for a stable persistent froth for 20 min, indicates the presence of saponin.

Ter penoi ds

In 2 ml of methanolic extract was added 1 ml chloroform shake properly and added H_2SO_4 . Raddish brown ring in obtained. Indicate the presence of terpenoids.

Steroids

2 ml of methanolic extract few amount of chloroform was added and shake properly and added 3 to 4 drop of acetic anhydride and 1 drop H_2SO_4 in a test tube. Formation of purple color change in to green. Indicate the presence of steroids.

Glycosides

2 ml of methanolic extract, 0.5 ml glacial acetic acid shake properly and added 3 to 4 drop of FeCl₃ in a test tube. Formation of brown color ring at the interface of test tube. Indicate the presence of cardiac glycosides.

Phenol

2 ml of methanolic extract was added 2 ml 5% aqueous $FeCl_3$ in a test tube. Formation of blue color obtained. Indicate the presence phenol.

Alkaloids

2 ml of methanolic extract was added 2 ml Mayer reagent in a test tube. Form white ppt. Indicate the presence alkaloids.

2.2 Quantitative Analysis

Total polyphenolic content

Total polyphenolic content of different part of plant extract was measured by using Folin reagent. The 25µl of plant extract Ciocaiteu diluted with 125µl water followed by addition of 150 μ l of Folin-ciocalteu (1N) & 25 μ l of Na₂CO₃ (20% W/V) and incubated at 45°C for 60 min then absorbance was measured by spectrophotometrically at 765nm (Bio Tek Synergy H4 multimode micro plate reader Bio Tek instrument, Inc Winoosci, VT, USA). Absorbance was recorded triplicates. Quantification was performed with respect to the standard curve of querecitin (equation). Result was expressed as milligram of querecitin equivalent per ml of $extract^{14}$.

Total flavonoid content

Total flavonoid in the plant extracts, in brief, 100 μ l of sample, followed by 100 μ l of AlCl₃.6H₂O in ethanol and 150 μ l Sodium acetate, solution added. The absorbance at 430nm was taken (BioTeksynergyH4 multi-mode microplate reader, Bio Tek Instruments, Inc Winooski, VT, USA), after 2.5 h of incubation at 200 C. Total flavonoid contents were calculated with respect to the standard curve of the flavonoid quercetin dehydrate (equation). Results were expressed as micrograms of quercetin dehydrate equivalents (QE) per ml of the extract¹⁴.

ISSN 2455-6378

Flavonol

Flavonol content in the sample (100 times diluted with methanol) was measured by mixing equal volume of plant extract with 2% AlCl3.6H₂O in a 96 well plate. Absorbance was recorded at 420 nm spectrophotometrically (Bio Tek synergyH4 multimode microplate reader, BioTek Instruments, Inc Winooski, VT, USA). Flavonol contents in the extracts were determined with respect to the standard curve of the flavonoid quercetin (equation). Results were expressed as micrograms of quercetin equivalents (QE) per ml of the extract.

3. Results And Discussion

The result of screening of Phytochemical from different part of *Ficus bhenghalesi Linn* showed the presence of medicinal active constituent like Flavonoid, Tannin, saponin, terpenoids, steroids and glycosides were given in **Table-1**.

Phytochemical analysis conducted on the plant extracts revealed the presence of constituent which are known to exhibit medicinal as well as physiological activity. Analysis of plant extract revealed the presence of Phytochemical such as alkaloid, flavonoid, tannin, saponin, glycosides, terpeniods, steroids have been associated with medicinal properties. Phytochemical are the basic source for the establishment for several Pharmaceutical industries. The constituent present in the plants play a significance role in the identification of crude drugs. Phytochemical screening is very important in identifying the new source of therapeutically and industrial important compounds like alkaloids, flavonoids, terpeniods, phenolic compound, saponin, steroids etc.

The quantitative analysis of *Ficus bhenghalesis* Linn. total phenolic content, total flavonoide and flavonol were carried out using multimode micro plate reader. The total phenolic content in plant extract is expressed in term of Cathechol equivalent **Fig. 1** (The equation of standard curve is Y =0.0139 X + 0.085 R² = 0.9859). The concentration of total phenolic content was estimated 5.395 in leaf, 0.359 in stem, 3.093 in bark and 2.589 µg/ml in fruit were given in **Table-2**. Phenolic compound occur ubiquitously in plants and a va- riety of biological activities have been attributed to them.

The total flavonoid content in plant extract is expressed in term of qurecetin equivalent **Fig. 2** (The equation of standanrded curve is Y = 0.0049 $X + 0.0949 R^2 = 0.9969$). The concentration of total flavonoid content in plant extract was estimated 55.326 in leaf, 129.408 in stem, 134.91 in bark, and 99.6122 in fruit were given in **Table-3**.

The flavonol content in plant extract is expressed in term of qurecetin equivalent **Fig. 3** (The equation of standanded curve is $Y= 0.0024+0.0635 \text{ R}^2$ =0.9855). The concentration of flavonol content in plant extract was estimated 123.5417 in leaf, 363.125 in stem, 268.9583 in bark and 111.875 in fruit were given in Table-4.

Phytochemicals	Test	Laef	Stem	Bark	Fruit
Flavonoid	-	+	+	+	+
Tannin	-	+	+	+	+
Carbohydrate	Molish	+	+	+	+
	Fehling	+	+	+	+
Protein	Biuret	+	-	-	+
Saponin	Foam	+	+	+	+
Terpeniods	-	+	+	+	+
Steroids	-	+	+	+	+
Glycoside	-	+	+	+	+
Phenol	-	+	+	+	+
Alkaloids	Meyer	-	-	-	-
Starch	Iodine	+	+	+	+

Table 1: Phytochemical screening of different part of ficus benghalensis

ISSN 2455-6378

	C 1°CC		1 1 1 .
Table 2: Total Polyphenol content	of different pa	it of ficus	benghalensis

S.NO.	Plant name	Botanical name	Total Polyphenol
1.	Bargad leaf	Ficus benghalensis	5.395µg/ml
2.	Bargad bark	Ficus benghalensis	3.093 µg/ml
3.	Bargad stem	Ficus benghalensis	0.359µg/ml
4.	Bargad Fruit	Ficus benghalensis	2.589 µg/ml

 Table 3: Flavonoid content of different part of ficus benghalensis

S.NO.	Plant name	Botanical name	Total Flavonoid
1.	Bargad leaf	Ficus benghalensis	55.326µg/ml
2.	Bargad bark	Ficus benghalensis	139.91µg/ml
3.	Bargad stem	Ficus benghalensis	129.408µg/ml
4.	Bargad Fruit	Ficus benghalensis	99.6122µg/ml

Table 4: Flavanol content of different part of ficus benghalensis

S.NO.	Plant name	Botanical name	Total Flavonol
1.	Bargad leaf	Ficus benghalensis	123.54 µg/ml
2.	Bargad bark	Ficus benghalensis	268.95 µg/ml
3.	Bargad stem	Ficus benghalensis	363.12 μg/ml
4.	Bargad Fruit	Ficus benghalensis	111.87µg/ml

IJASRM

www.ijasrm.com

ISSN 2455-6378

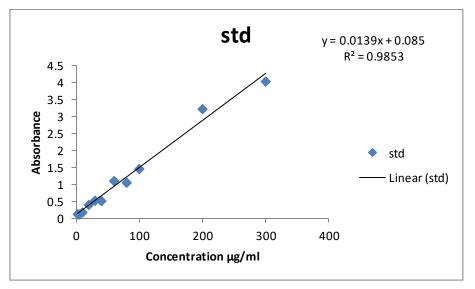


Fig. 1: Standanred graph of cathechol for total phenol

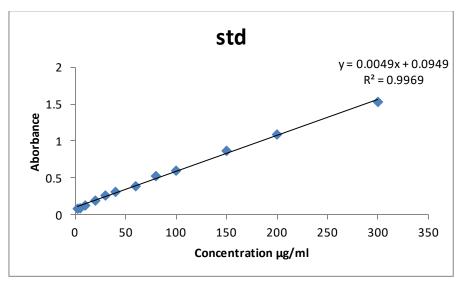
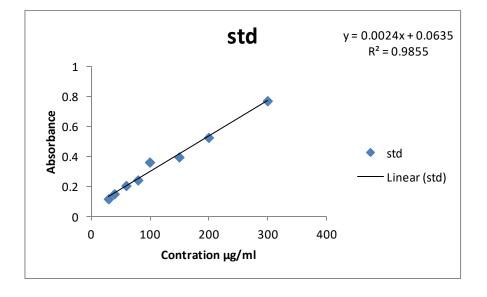
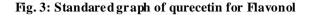




Fig. 2: Standarderd graph of qurecetin for Flavonoid

ISSN 2455-6378

4. Conclusion

ASRN

The present research work concludes that *Ficus* benghalensis is important medicinal plants and contains various active phyto constituents. The overall result obtain by present study we observed that the total flavonoid content was highest in *Ficus* benghalensis leaf and lowest in stem. Highest flavonol content was found in *F. benghalensis* stem, lowest in fruit and total phenolic content was highest in leaf and lowest in stem.

Reference

- Babu Koilpillai, Shanker Sabesan Gokul, Rai Sadananda, Comparative Pharmacognostic Studies on the barks of four *Ficus* species, Turk J Boat, 34, 215-224, 2012.
- 2. Pandeya Krishna Bihari, Tripathi Indra Prasad, Mishra Mahendra Kumar, Dwivedi Neelesh, Pardhi Yogesh, Kamal Arti, Gupta Priyanka, Dwivedi Nupa, Mishra Chin may i, Α Critical Review on Traditional Herbal Drugs: An Emerging Alternative Drug for Diabetes, International Journal of Organic Chemistry. 3, 1-22, 2013.
- 3. Singh Shailja, Jais wal Shalini, Therapeutic Properties of *Ficus Regligiosa* International Journal of Engineering Research and General Science, 2, 2014
- 4. Agrawal Supriya, Katare Charu, Prasad Gbks, Antioxidant activity, total Phenolic compound and Flavonoid content of vaccum dried extract of *L. Siceraria*,

Global Journal of pharmaceutical research, 4, 302-308,2015.

- 5. Taskeen Abida, Naeem Ismat, Mubeen Hifsa and Mehmood Talib, Reverse Phase High Performance Liquid Chromatographic analysis of flavonoids in two *Ficus* species, New York Science Journal, 2, 32-35, 2009.
- Shaikh Abusufyan, Ibrahim Mohammed, Mohib Khan, Comparative in vitro Antidiabetic and Antioxidant Activity of Various Extracts of Ficus Species, A Multifaceted Journal in the field of Natural Products and Pharmacognosy, 10, 349-354, 2018.
- Chandrasekar S. B., Bhanumathy M., Pawar A. T., 1 and Somasundaram T., Phytopharmacology of Ficus religiosa, Pharmacogn Rev.4, 195-199, 2010.
- 8. Mandal SG, Shete RV, Kore KJ, Otari KV, Kale BN and Manna AK, Review: Indian national tree (*Ficus bengalensis*), International Journal of Pharmacy and Life sciences, 1,268-273,2010.
- 9. Deraniyagala, S.A., Wijesundera, R.L.C. and Weerasena, O.V.D.S.J. Antifungal activity of *Ficus racemosa* leaf extract and isolation of active compound, Journal of the National Science Foundation of Sri Lanka, volume 26, 19-26, 1998.
- Deshmukh V.K., Shrotri D.S. and Aiman R., Isolation of a Hypoglycemic principle from the bark of Ficus bengalensis, Ind., J. Physiol. and Pharmacol. 4, 182-185, 1960.

ISSN 2455-6378

- 11. Garg Vipin Kumar, Paliwal Sarvesh Kumar, Wound-healing activity of ethanolic and aqueous extracts of *Ficus benghalens*, J Adv Pharm Technol Res.. 6, 110-114, 2011.
- 12. Zohar S. F., Meriem B., Samira S., A. M. M. S., Phytochemical Screening and identification of some compounds from Mallow, Journal of Natural Product and Plant Resources, 2, 512-516, 2012
- Ayoola G.A., Coker H., Adesegun S A, Adepoju-Bello AA, Obaweya K, Ezennia EC, Atangbalyia TO, Phytochemical

Screening and Antioxidant Activitieof Some Selected Medicinal Plants used for Malaria Tharapy in Southwestern Nigeria Jurnal of Pharmaceutical Research, 7,1019-1024, 2008.

14. I.P. Tripathi, M. K. Mishra, C. Mishra, R. Tripathi, A. Kamal, P. Tripathi. V.P. Shukla, R. Gangele and K.B. Pandey, Assessment of Antioxidant and Total Polyphenolic content of some plants of Euphorbiaceae Family, Indian Journal of Applied Research, volume 3, 1-4, 2013.